Selective oxidation and ammoxidation of propene on bismuth molybdates, ab initio calculations

نویسندگان

  • Yun Hee Jang
  • William A. Goddard
چکیده

In this paper we use first principles quantum mechanical methods (B3LYP flavor of density functional theory) to examine the mechanism of selective oxidation and ammoxidation of propene by BiMoOx catalysts. To do this we use finite clusters chosen to mimic likely sites on the heterogeneous surfaces of the catalysts. We conclude that activation of the propene requires a Bi(V) site while all subsequent reactions involve di-oxo Mo(VI) sites adjacent to the Bi. We find that two such Mo sites are required for the most favorable reactions. These results are compatible with current experimental data. For ammoxidation, we conclude that ammonia activation would be easier on Mo(IV) rather than on Mo(VI). Ammonia would be activated more easily for more reducing condition. Since ammonia and propene are reducing agents, higher partial pressures of them could accelerate the ammonia activation. This is consistent with the kinetic model of ammoxidation proposed by Grasselli and coworkers that imido sites (Mo=NH) are more abundant in higher partial pressures of feed. Our calculations also indicate that allyl groups produced as a result of the hydrogen abstraction from propenes would be adsorbed more easily on imido groups (Mo=NH) than on oxo groups (Mo=O) and that the spectator oxo effect is larger than spectator imido effect. Thus, we propose that the best site for ammoxidation (at least for allyl adsorption) is the imido group of the “oxo–imido” species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of Selective Oxidation and Ammoxidation of Propene on Bismuth Molybdates from DFT Calculations on Model Clusters

In this paper, we use first principles quantum mechanical methods (B3LYP flavor of Density Functional Theory) to examine the mechanism of selective oxidation and ammoxidation of propene by BiMoOx catalysts. To do this, we use finite clusters chosen to mimic likely sites on the heterogeneous surfaces of the catalysts. We conclude that activation of the propene requires a Bi(V) site, whereas all ...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Mesostructural Bi-Mo-O catalyst: correct structure leading to high performance

Structure-activity relationship has been one of the main topics of research on catalysts all the time. Component and structure are the two moieties governing the performance of solid materials as catalysts. Multicomponent bismuth molybdates are well known catalysts for propene oxidation but pure crystalline phases of bismuth molybdate are inactive for the reaction. We have designed mesostructur...

متن کامل

Ab initio Calculations SWNTs and Investigation of Interaction Atoms of Oxygen with that by Computational Calculations

In this work, theoretical investigations on carbon nanotube with oxygen atom have been carried out by firstprinciplescalculations and density functional theory and hartree fock theory in 3-216 and 6-316 basis sets. Theinteraction energy of the oxygen atom to a CNT is calculated. The effects of this substitutions have beeninvestigated on the during transplantation (10,0) single-walled carbon nan...

متن کامل

AB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule

BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001